Hardware Neural Network Implementation of Tracking System

نویسندگان

  • George G. Lendaris
  • Robert M. Pap
  • Richard E. Saeks
  • Richard M. Akita
چکیده

A neural network (NN) filter/target-tracking system has been developed as reported in [6]. The design accepts and inputs signal data to a noise/target classifier which uses spectral estimation techniques to distinguish noise from real targets. In that design, the NN is used to calculate the coefficients of an auto regressive linear predictive filter. The current evolution of that design invokes the use of Lagrange Multiplier methods to incorporate known characteristics of the noise vs. signal. A (linear) Hopfield NN is used to perform the constrained optimization to solve for the filter coefficients. This algorithm has been demonstrated on real stochastic data. The filter resulting from this process succeeds in reducing the noise, whose structure was learned by the NN. Not only did this approach reduce structured noise without target attenuation or the addition of a ‘ghost’ signal, but it also lowered the base level of the resultant signal significantly. The overall concept has been tested and validated using real data on a workstation and the nardware NN implementation has been validated. This concept has been tested on the AAC Multiple Instruction Multiple Data (MIMD) Neural NetworkProcessor (NNP) hardware. Each processor runs at 140 million connections/sec with 8K neurons. An expanded version of the system performs a total of a billion plus connections/sec. Unlike classical SIMD NN architectures, which are really general purpose array processors, this MIMD system architecture was custom designed for NN applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared Counter-Countermeasure Efficient Techniques using Neural Network, Fuzzy System and Kalman Filter

This paper presents design and implementation of three new Infrared Counter-Countermeasure (IRCCM) efficient methods using Neural Network (NN), Fuzzy System (FS), and Kalman Filter (KF). The proposed algorithms estimate tracking error or correction signal when jamming occurs. An experimental test setup is designed and implemented for performance evaluation of the proposed methods. The methods v...

متن کامل

Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets

Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...

متن کامل

Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks

During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...

متن کامل

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

Maximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method

The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...

متن کامل

Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994